Saturday, November 5, 2016

Exponentially Smoothed Moving Average Excel

Promedio móvil El Indicador técnico de media móvil muestra el valor medio del precio del instrumento durante un cierto período de tiempo. Cuando se calcula la media móvil, se calcula la media del precio del instrumento para este período de tiempo. A medida que el precio cambia, su promedio móvil aumenta o disminuye. Hay cuatro tipos diferentes de promedios móviles: Simple (también conocido como Aritmética), Exponencial. Suavizado y ponderado. El Promedio móvil puede calcularse para cualquier conjunto de datos secuenciales, incluyendo precios de apertura y cierre, precios más altos y más bajos, volumen de operaciones o cualquier otro indicador. A menudo es el caso cuando se utilizan medias móviles dobles. Lo único en que los promedios móviles de diferentes tipos divergen considerablemente entre sí, es cuando los coeficientes de peso, que se asignan a los últimos datos, son diferentes. En el caso de que estamos hablando de Media móvil simple. Todos los precios del período de tiempo en cuestión son iguales en valor. La media móvil exponencial y la media móvil ponderada lineal atribuyen más valor a los precios más recientes. La forma más común de interpretar el precio promedio móvil es comparar su dinámica con la acción del precio. Cuando el precio del instrumento sube por encima de su promedio móvil, aparece una señal de compra, si el precio cae por debajo de su media móvil, lo que tenemos es una señal de venta. Este sistema de comercio, que se basa en la media móvil, no está diseñado para proporcionar la entrada en el mercado justo en su punto más bajo, y su salida a la derecha en el pico. Permite actuar de acuerdo con la siguiente tendencia: comprar poco después de que los precios lleguen al fondo, y vender poco después de que los precios hayan alcanzado su punto máximo. Los promedios móviles también pueden aplicarse a los indicadores. Es ahí donde la interpretación de las medias móviles de los indicadores es similar a la interpretación de los promedios móviles de los precios: si el indicador sube por encima de su media móvil, es probable que continúe el movimiento del indicador ascendente: si el indicador cae por debajo de su promedio móvil, Significa que es probable que siga bajando. Estos son los tipos de promedios móviles en el gráfico: Promedio móvil simple (SMA) Promedio móvil exponencial (EMA) Promedio móvil suavizado (SMMA) Promedio móvil ponderado lineal (LWMA) Puede probar las señales comerciales de este indicador creando un Asesor experto En MQL5 Asistente. Cálculo Promedio móvil simple (SMA) Simple, en otras palabras, el promedio móvil aritmético se calcula sumando los precios del cierre del instrumento durante un cierto número de períodos individuales (por ejemplo, 12 horas). Este valor se divide entonces por el número de tales períodos. SMA SUM (CERRAR (i), N) / N SUM SUM CERRAR (i) período actual precio de cierre N número de períodos de cálculo. Promedio móvil exponencial (EMA) La media móvil suavizada exponencialmente se calcula sumando una cuota determinada del precio de cierre actual al valor anterior de la media móvil. Con promedios móviles suavizados exponencialmente, los últimos precios de cierre son de mayor valor. La media móvil exponencial de P por ciento se verá así: EMA (CERRAR (i) P) (EMA (i - 1) (1 - P)) CERRAR (i) De un período anterior P el porcentaje de utilización del valor del precio. Promedio móvil suavizado (SMMA) El primer valor de esta media móvil suavizada se calcula como la media móvil simple (SMA): SUM1 SUM (CLOSE (i), N) La segunda media móvil se calcula de acuerdo con esta fórmula: SMMA (i) (I) (N) () () () () () NMA (i - 1) ) / N SUM sum SUM1 suma total de los precios de cierre para N periodos se cuenta desde la barra anterior PREVSUM suma suavizada de la barra anterior SMMA (i-1) media móvil suavizada de la barra anterior SMMA (i) media móvil suavizada de la barra Barra actual (excepto la primera) CERRAR (i) precio de cierre actual N período de suavizado. Después de conversiones aritméticas, la fórmula puede simplificarse: SMMA (i) (SMMA (i - 1) (N - 1) CERRAR (i)) / N Promedio móvil ponderado lineal (LWMA) En el caso de la media móvil ponderada, Tiene más valor que los datos más antiguos. La media móvil ponderada se calcula multiplicando cada uno de los precios de cierre dentro de la serie considerada por un cierto coeficiente de ponderación: LWMA SUM (CLOSE (i) i, N) SUM (i, N) suma total de los coeficientes de peso N período de suavizado. Suavizado exponencial Este ejemplo le enseña cómo aplicar el suavizado exponencial a una serie de tiempo en Excel. El suavizado exponencial se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione suavizado exponencial y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Factor de amortiguación y escriba 0.9. La literatura a menudo habla de la constante de alisamiento (alfa). El valor (1-) se denomina factor de amortiguación. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: debido a que ponemos alfa a 0,1, el punto de datos anterior recibe un peso relativamente pequeño mientras que al valor suavizado anterior se le da un peso grande (es decir, 0,9). Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular el valor suavizado para el primer punto de datos porque no hay punto de datos anterior. El valor suavizado para el segundo punto de datos es igual al punto de datos anterior. 9. Repita los pasos 2 a 8 para alfa 0.3 y alfa 0.8. Conclusión: El menor alfa (mayor el factor de amortiguación), más los picos y valles se suavizan. Cuanto mayor sea el valor alfa (menor el factor de amortiguación), más cercanos serán los valores suavizados a los puntos de datos reales. Te gusta este sitio web gratuito? Comparte esta página en GoogleForecasting por Smoothing Techniques Este sitio es una parte de los objetos de aprendizaje JavaScript E-Labs para la toma de decisiones. Otros JavaScript de esta serie se clasifican en diferentes áreas de aplicaciones en la sección MENÚ de esta página. Una serie de tiempo es una secuencia de observaciones que se ordenan en el tiempo. Inherente en la recolección de datos tomados en el tiempo es una forma de variación al azar. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Las técnicas ampliamente utilizadas son el alisado. Estas técnicas, cuando se aplican correctamente, revelan con mayor claridad las tendencias subyacentes. Introduzca la serie de tiempo en orden de fila en secuencia, comenzando desde la esquina superior izquierda y los parámetros, luego haga clic en el botón Calcular para obtener una previsión de un período de tiempo. Las cajas en blanco no se incluyen en los cálculos, pero los ceros son. Al introducir los datos para pasar de celda a celda en la matriz de datos, utilice la tecla Tab no la flecha o las teclas de entrada. Características de las series temporales, que podrían revelarse al examinar su gráfico. Con los valores pronosticados, y el comportamiento de los residuos, modelado de predicción de condiciones. Promedios móviles: Las medias móviles se encuentran entre las técnicas más populares para el preprocesamiento de series de tiempo. Se utilizan para filtrar el ruido blanco aleatorio de los datos, para hacer la serie temporal más suave o incluso para enfatizar ciertos componentes informativos contenidos en la serie de tiempo. Suavizado exponencial: Este es un esquema muy popular para producir una serie temporal suavizada. Mientras que en Promedios móviles las observaciones anteriores se ponderan igualmente, el suavizado exponencial asigna pesos exponencialmente decrecientes a medida que la observación se hace mayor. En otras palabras, las observaciones recientes reciben un peso relativamente mayor en la predicción que las observaciones más antiguas. Double Exponential Smoothing es mejor para manejar las tendencias. Triple Exponential Smoothing es mejor en el manejo de las tendencias de la parábola. Un promedio móvil ponderado exponencialmente con una constante de suavizado a. Corresponde aproximadamente a una media móvil simple de longitud (es decir, periodo) n, donde a y n están relacionados por: a 2 / (n1) OR n (2 - a) / a. Así, por ejemplo, una media móvil exponencialmente ponderada con una constante de suavizado igual a 0,1 correspondería aproximadamente a un promedio móvil de 19 días. Y una media móvil simple de 40 días correspondería aproximadamente a una media móvil ponderada exponencialmente con una constante de suavizado igual a 0,04878. Holt Lineal Exponencial Suavizado: Suponga que la serie temporal no es estacional pero sí muestra la tendencia. El método Holts estima tanto el nivel actual como la tendencia actual. Observe que la media móvil simple es un caso especial del suavizado exponencial estableciendo el periodo de la media móvil en la parte entera de (2-Alpha) / Alpha. Para la mayoría de los datos empresariales, un parámetro Alpha menor de 0,40 suele ser efectivo. Sin embargo, se puede realizar una búsqueda de cuadrícula del espacio de parámetros, con 0,1 a 0,9, con incrementos de 0,1. Entonces el mejor alfa tiene el menor error absoluto medio (error MA). Cómo comparar varios métodos de suavizado: Aunque existen indicadores numéricos para evaluar la precisión de la técnica de pronóstico, el enfoque más amplio consiste en utilizar la comparación visual de varios pronósticos para evaluar su exactitud y elegir entre los diversos métodos de pronóstico. En este enfoque, se debe trazar (utilizando, por ejemplo, Excel) en el mismo gráfico los valores originales de una variable de serie temporal y los valores predichos de varios métodos de pronóstico diferentes, facilitando así una comparación visual. Es posible que desee utilizar las previsiones pasadas mediante técnicas de suavizado JavaScript para obtener los valores de pronósticos anteriores basados ​​en técnicas de suavizado que utilizan sólo un solo parámetro. Holt y Winters usan dos y tres parámetros, respectivamente, por lo que no es una tarea fácil seleccionar los valores óptimos, o incluso casi óptimos por ensayo, y los errores para los parámetros. El único suavizado exponencial enfatiza la perspectiva de corto alcance que fija el nivel a la última observación y se basa en la condición de que no hay tendencia. La regresión lineal, que se ajusta a una línea de mínimos cuadrados a los datos históricos (o datos históricos transformados), representa el largo alcance, que está condicionado por la tendencia básica. El alineamiento exponencial lineal de Holts captura la información sobre la tendencia reciente. Los parámetros en el modelo de Holts son los niveles-parámetro que deben ser disminuidos cuando la cantidad de variación de los datos es grande, y tendencias-parámetro debe ser aumentado si la dirección de la tendencia reciente es apoyada por la causal algunos factores. Pronóstico a Corto Plazo: Observe que cada JavaScript en esta página proporciona un pronóstico de un paso adelante. Obtener un pronóstico de dos pasos adelante. Simplemente agregue el valor pronosticado al final de los datos de la serie temporal y luego haga clic en el mismo botón Calcular. Usted puede repetir este proceso por unas pocas veces con el fin de obtener los pronósticos a corto plazo necesarios. Cómo calcular los promedios móviles en Excel Excel Data Analysis For Dummies, 2nd Edition El comando Data Analysis proporciona una herramienta para calcular los promedios móviles y exponencialmente suavizados en Sobresalir. Supongamos, por razones ilustrativas, que usted ha recopilado información diaria sobre la temperatura. Desea calcular el promedio móvil de tres días 8212 el promedio de los últimos tres días 8212 como parte de algún pronóstico meteorológico simple. Para calcular las medias móviles para este conjunto de datos, siga estos pasos. Para calcular una media móvil, primero haga clic en el botón de comando Data Analysis (Análisis de datos) tab8217s. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Promedio móvil de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Promedio móvil. Identifique los datos que desea utilizar para calcular el promedio móvil. Haga clic en el cuadro de texto Intervalo de entrada del cuadro de diálogo Promedio móvil. A continuación, identifique el intervalo de entrada, ya sea escribiendo una dirección de rango de hoja de cálculo o utilizando el mouse para seleccionar el rango de hoja de cálculo. Su referencia de rango debe usar direcciones de celdas absolutas. Una dirección de celda absoluta precede la letra de la columna y el número de fila con signos, como en A1: A10. Si la primera celda de su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas en primera fila. En el cuadro de texto Intervalo, indique a Excel cuántos valores deben incluirse en el cálculo del promedio móvil. Puede calcular un promedio móvil usando cualquier número de valores. De forma predeterminada, Excel utiliza los tres valores más recientes para calcular el promedio móvil. Para especificar que se utilice otro número de valores para calcular el promedio móvil, ingrese ese valor en el cuadro de texto Intervalo. Dígale a Excel dónde colocar los datos del promedio móvil. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, los datos del promedio móvil se han colocado en el rango B2 de la hoja de cálculo: B10. (Opcional) Especifique si desea un gráfico. Si desea un gráfico que trace la información del promedio móvil, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indique si desea calcular la información de error estándar. Si desea calcular errores estándar para los datos, seleccione la casilla de verificación Estándar Errores. Excel coloca valores de error estándar junto a los valores de media móvil. (La información de error estándar pasa a C2: C10.) Una vez que haya terminado de especificar qué información de promedio móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil. Nota: Si Excel doesn8217t tiene suficiente información para calcular un promedio móvil para un error estándar, coloca el mensaje de error en la celda. Puede ver varias celdas que muestran este mensaje de error como un valor. Cómo calcular los promedios móviles ponderados en Excel mediante el suavizado exponencial Análisis de datos de Excel para Dummies, 2ª edición La herramienta Suavizado exponencial en Excel calcula el promedio móvil. Sin embargo, el suavizado exponencial pesa los valores incluidos en los cálculos del promedio móvil de modo que los valores más recientes tengan un mayor efecto en el cálculo promedio y los valores antiguos tengan un efecto menor. Esta ponderación se realiza a través de una constante de suavizado. Para ilustrar cómo funciona la herramienta Exponential Smoothing, supongamos que vuelve a examinar la información diaria promedio sobre la temperatura. Para calcular las medias móviles ponderadas usando el suavizado exponencial, realice los siguientes pasos: Para calcular una media móvil suavizada exponencialmente, primero haga clic en el botón de comando Análisis de datos de la barra de datos. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Exponential Smoothing de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Exponential Smoothing. Identificar los datos. Para identificar los datos para los que desea calcular un promedio móvil exponencialmente suavizado, haga clic en el cuadro de texto Rango de entrada. A continuación, identifique el rango de entrada, ya sea escribiendo una dirección de intervalo de hoja de cálculo o seleccionando el intervalo de hoja de cálculo. Si su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas. Proporcione la constante de suavizado. Introduzca el valor de la constante de suavizado en el cuadro de texto Factor de amortiguación. El archivo de Ayuda de Excel sugiere que utilice una constante de suavizado de entre 0,2 y 0,3. Sin embargo, presumiblemente, si usa esta herramienta, tiene sus propias ideas acerca de cuál es la constante de suavizado correcta. (Si usted no tiene ni idea acerca de la constante de suavizado, quizás no debería usar esta herramienta.) Dígale a Excel dónde colocar los datos de promedio móvil suavizado exponencialmente. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, por ejemplo, coloque los datos del promedio móvil en el rango de hoja de cálculo B2: B10. (Opcional) Diagrama los datos suavizados exponencialmente. Para graficar los datos exponencialmente suavizados, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indica que desea que se calcula la información de error estándar. Para calcular los errores estándar, seleccione la casilla de verificación Estándar Errores. Excel sitúa los valores de error estándar junto a los valores de la media móvil exponencialmente suavizados. Una vez que haya terminado de especificar qué información de media móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil.


No comments:

Post a Comment